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Transient cavities near boundaries. 
Part 1. Rigid boundary 
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The growth and collapse of transient vapour cavities near a rigid boundary in the 
presence of buoyancy forces and an incident stagnation-point flow are modelled via 
a boundary-integral method. Bubble shapes, particle pathlines and pressure contours 
are used to illustrate the results of the numerical solutions. Migration of the 
collapsing bubble, and subsequent jet formation, may be directed either towards or 
away from the rigid boundary, depending on the relative magnitude of the physical 
parameters. For appropriate parameter ranges in stagnation-point flow, unusual 
‘hour-glass’ shaped bubbles are formed towards the end of the collapse of the bubble. 
It is postulated that the ha1  collapsed state of the bubble may be two toroidal 
bubbles/ring vortices of opposite circulation. For buoyant vapour cavities the 
Kelvin impulse is used to obtain criteria which determine the direction of migration 
and subsequent jet formation in the collapsing bubble. 

1. Introduction 
Cavitation damage is one of the major problems that may occur in hydraulic 

machinery, requiring the careful design of equipment to avoid its occurrence or at 
least allow it to exist in a controlled and hydrodynamicaly efficient form. Excessive 
cavitation not only leads to structural damage to the equipment and noise but may 
also lead to a dramatic decline in operating efficiency. Many graphic examples of 
cavitation damage to ship propellers, turbine blades, spillways and valves abound 
in the literature (see e.g. Knapp, Daily & Hammitt 1970; Arndt 1981). 

Cavitation bubbles may be created and exist in many different physical circum- 
stances such as in a tip vortex (see e.g. Batchelor 1967, figure 6.12.2 (a)), transient or 
travelling bubbles (figure 6.12.1), sheets of bubbles (figure 6.12.2 (b)), steady cavities 
(figure 6.12.5) and in regions of high turbulent intensity. In  turbomachinery a 
common occurrence would be for cavitation inception to occur just downstream from 
the point of minimum pressure, but prior to the separation point, so that the 
cavitation bubbles are swept up over the separation ‘bubble’. Structural damage is 
frequently observed to occur near reattachment of the boundary layer. 

There have been extensive experimental studies on cavitating fluids from the more 
practical engineering side (Knapp et al. 1970; Arndt 1981) with less experimental 
work at the fundamental level, although recent developments with high-speed 
cameras have enabled accurate photographic records of bubble shape to be obtained 
(Benjamin & Ellis 1966; Gibson 1968; Lauterborn & Bolle 1975; Lauterborn 1982; 
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Lauterborn & Vogel 1984). On the other hand notable theoretical studies, including 
numerical solutions, have been less prevalent. 

Most theory to date, apart from purely numerical solutions, has been based on the 
spherically symmetric solution of a collapsing cavitation bubble, first obtained by 
Rayleigh (1917). Typically, an asymmetry is introduced in the theory, say for 
example by a rigid boundary or free surface, and a perturbation analysis is often 
developed in terms of the small parameter E ,  which is equal to the ratio of the initial 
(maximum) radius of the spherical bubble to the distance of the centre from the 
boundary. As the Rayleigh bubble is normally the zeroth-order solution, these 
studies yield small perturbations from the Rayleigh solution and thus any inferences 
on what might happen at the physically important values of E near 1 may be 
potentially misleading. A recent example of this approach may be found in Chahine 
& Bovis (1983) wherein further references may be found. 

Another notable contribution to the theoretical development of the subject was 
the paper by Benjamin & Ellis (1966) which combined an intuitive theoretical 
discussion of cavitation damage together with observations of the gross asymmetries 
(the high-speed jet) that may occur during cavitation-bubble collapse near a rigid 
boundary. Probably the most important concept that they introduced into the study 
of cavitation bubble dynamics was t3he concept of the Kelvin impulse (see also Lamb 
1932). The Kelvin impulse may be interpreted as the linear momentum of the 
‘bubble’ and in many ways is akin to the linear momentum of a projectile. The Kelvin 
impulse, in unsteady fluid mechanics and in the presence of boundaries, is a 
conceptually difficult quantity to understand (see Lamb 1932; Benjamin & Ellis, 
1966; Blake & Cerone 1982; Blake 1983 for further discussion). Analogous studies 
in the area of aquatic swimming have been developed by Saffman (1967) and Wu 
(1976) and in the general area of Lagally’s Theorem (see Landweber & Miloh 1980 
for further references). Later in this paper we exploit the use of the Kelvin impulse 
to delineate between the relative importance of boundary interaction and buoyancy 
effects in determining the direction of movement of a cavitation bubble and the 
consequent direction of the high-speed liquid jet. 

Over the last decade numerical solutions have improved our understanding of 
cavitation bubble dynamics in enabling us  to consider realistic examples of bubbles 
immediately adjacent to the boundary (E x 1). Quantities that may be obtained as 
a result of these numerical computations include bubble shape as a function of time, 
particle paths, pressure contours, jet speed and instantaneous streamlines. The first 
fully numerical paper for the complete collapse of a cavitation bubble near a rigid 
boundary wm developed by Plesset & Chapman (1971) and their results have been 
the basis for comparisons ever since. Lauterborn & Bolle’s (1975) experiments showed 
remarkable agreement between their experimental study and Plesset & Chapman’s 
theory considering the obvious assumptions in the theory and difficulty in producing 
equivalent experimental conditions. More detailed studies on cavitation bubbles near 
rigid boundaries have recently been presented by Guerri, Lucca & Prosperetti (1981), 
Prosperetti (1982), Cerone & Blake (1984), Taib, Doherty & Blake (1984) and Taib 
(1985). Numerical studies on a cavitation bubble near a free surface have been 
developed by Lenoir (1976), Blake & Gibson (1981), Taib (1985), and in a paper in 
preparation by the present authors. 

In  our study herein we are primarily concerned with the growth and collapse of 
cavitation bubbles near rigid boundaries. Bearing in mind that the shape of the 

(1) 
dx bubble is specified by 
- = u(x, t ) ,  X€S, 
dt 
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where x is a position vector, S the surface of the bubble, u the velocity vector and 
t time, and that for an incompressible and inviscid fluid the velocity is related to the 
pressure gradient (Vp) by 

u = u o - i  Vpdt, 
p xo 

where p is the fluid density, it  is clear that any realistic theoretical study must include 
(i) a rigid boundary, (ii) an ambient velocity field and (iii) an ambient pressure field. 

During the growth phase cavitation bubbles are, in many circumstances, 
approximately spherical, appearing to be almost independent of the local velocity 
and pressure field, which will be fully three-dimensional. However during collapse the 
irregularities in the velocity and pressure field together with the presence of the 
boundary and nearby bubbles will be clearly evident in the bubble shape. While the 
fully three-dimensional study is not entirely beyond theoretical and machine 
capabilities, it would seem prudent to study a reduced problem whereby we assume 
axisymmetry in the flow field and bubble shape. In  this way we can compare the 
relative effects of the interaction of a transient bubble with a rigid boundary and an 
imposed ambient velocity and pressure field. 

In  this paper we develop a theory to model the growth and collapse of buoyant 
vapour bubbles near a rigid boundary in the presence of an axisymmetric stagnation- 
point flow (a pure straining motion, characterized by a rate-of-strain tensor linearly 
dependent on the strength of the stagnation-point flow). This allows us to analyse, 
in isolation and together, the three principle kinematic and dynamical features of 
cavitation outlined above. The importance of each of these effects may be determined 
by the magnitude of the dimensionless parameters 

where h is the initial distance of the bubble centroid from the rigid boundary, Rm 
is the maximum bubble radius (not to be confused with the initially small bubble 
radius Ro), g gravitational acceleration and Ap  = p,-p,, where pa is the ambient 
pressure in the fluid at the initial bubble centroid, pc  is the vapour pressure inside 
the bubble and co is the strength of the stagnation-point flow. Thus y determines the 
initial location of the bubble ( = l/s from earlier discussion), S the relative importance 
of buoyancy forces while a is a measure of the incident stagnation-point flow. The 
signs in front of 8 corresponds to the different directions of the gravity vector while 
the signs for a correspond to the different directions of the stagnation-point flow (i.e. 
forward or rearward). The configuration considered in this theoretical study is 
essentially identical with the experimental arrangement described in Gibson (1968), 
Blake & Gibson (1981) and Gibson & Blake (1982) and thus provides a basis for 
comparison. 

Before proceeding with the theoretical study it is worthwhile considering the 
competing physical phenomena that are involved in this study. The Bjerknes effect 
(see Birkhoff & Zarantonello 1957 ; Batchelor 1967) for a pulsating cavitation bubble 
near a rigid boundary is directed towards the rigid boundary, thus the bubble 
migrates towards the boundary with the consequence that the high-speed liquid jet 
is also directed towards the boundary. (see also experimental studies reported in 
Benjamin & Ellis 1966; Gibson 1968; Lauterborn & Bolle 1975; Lauterborn 1982). 

Buoyancy effects act in the opposite direction to the gravity vector because of 
the lower density of the vapour inside the bubble. The buoyancy force is directly 
proportional to the volume of the bubble so that initially in the growth phase and 
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late in the collapse phase, when the bubble volume is small, buoyancy effects will 
be less important. However, as around 80 % of the lifetime of the bubble is spent near 
maximum bubble size these effects may be important for bubble diameters greater 
than 1 cm. Depending on the location of the rigid boundary, buoyancy forces may 
either oppose or support the Bjerknes effect; both cases are considered in later 
examples. Buoyancy forces are not normally important in practice, although in 
experiments involving reduced pressures, bubbles may grow to a size sufficient to 
make buoyancy forces important. 

In stagnation-point flow the maximum pressure occurs at the stagnation point, 
thus leading us to consider two contributions to the dynamics of the bubble’s motion; 
namely the opposing influence of the velocity and pressure fields a t  a forward 
stagnation point corresponding to a deceleration of the fluid as it approaches the 
stagnation point, while a t  a rear stagnation point they act in the same direction 
corresponding to an acceleration of the fluid away from the stagnation point. In  
addition the relative importance of each contribution is dependent on the distance 
from the boundary. 

Thus, by considering the growth and collapse of cavitation bubbles near a rigid 
boundary in which buoyancy forces may be important and in the presence of an 
incident stagnation-point flow, we have competing physical phenomena that con- 
tribute to the overall response of the cavitation bubble. An understanding of these 
basic dynamical contributions will be an invaluable contribution to our understand- 
ing of cavitation-bubble dynamics. 

In  the next section we develop the equations required to model a cavitation bubble 
near a rigid boundary. This is followed by a brief description of the boundary-integral 
method which is used to obtain pointwise information on the time-dependent bubble 
shape, particle paths and pressure field surrounding the bubble. Results of these 
calculations are interpreted and discussed in the following section. In the penultimate 
section, some of the earlier results are interpreted in terms of the Kelvin impulse. 
The final section summarizes the main conclusions that may be drawn from the study 
and identifies areas for future study. 

2. Theory 
In  this section we develop the theory to model the growth and collapse of a vapour 

bubble that is subject to  both buoyancy forces and the velocity and pressure field due 
to an axisymmetric stagnation-point flow near a rigid boundary. We assume the flow 
field and the bubble remain axisymmetric, which experimental evidence tends to 
support. The geometrical description of the problem is illustrated in figure 1. 

The fluid dynamics may be modelled by considering the fluid to be incompressible, 
inviscid and irrotational leading to the velocity being expressed as the gradient of 
a potential q5, i.e. 

u =  vq5, vzq5 = o .  (4 ) 

We neglect viscous forces because of the high velocities and consequent high 
Reynolds number (R- lo4) during growth and collapse. In  addition the boundary 
layers are typically very thin around the stress-free bubble surface, so in any event 
viscous forces are confined to the immediate proximity of the surface of the bubble. 
Surface-tension forces are also neglected although they may be important during 
bubble growth just after inception and also at the jet tip in the latter stages of 
collapse (e.g. in Blake & Gibson’s 1981 experiments a t  reduced pressure 
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FIQURE 1. Geometry used in the analysis of the growth and collapse of a vapour bubble near a 

rigid boundary. 

p ,  -p ,  = 6 - 7 kPa,pSt = 1.4 kPa). Compressibility effects are generally unimportant 
during the first pulsation as velocities are typically significantly less than the speed 
of sound in either the vapour or the liquid. A more extensive discussion of the above 
physical factors may be found in Hammitt (1980). Although not normally important 
in cavitation, buoyancy forces are included to allow us to independently vary the 
ambient pressure field around the bubble and to monitor its influence on the bubble’s 
growth and collapse characteristics. 

The solution of Laplace’s equation is obtained using a boundary-integral method. 
The numerical procedure to solve the integral equations is presented in the next 
section. In  these equations the incident stagnation-point flow $, is defined to be 

$ , (2 , r )  = f&l(r2-222), ( 5 )  

where the sign of c, determines whether we are considering a forward or rearward 
stagnation-point flow. 

The initial conditions are taken from the spherically symmetric Reyleigh bubble 
solution in an infinite fluid for a bubble of small radius R, together with the 
corresponding axisymmetric stagnation-point flow on the surface of the bubble, as 
follows : 

9(27 r ,  t c )  = $O(%, +#R(RO, t c ) ,  

where 

and 

The ‘initial time’ t, is the time it takes a Rayleigh bubble to grow to radius R, from 
inception, which is expressed in terms of an incomplete beta function (Abramowitz 
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& Stegun 1965). The initial bubble potential q5R may be modified slightly by the 
inclusion of the image source term but this only produces an O((R,/h)2)  change in 
q5 and has no major significance during the stable growth phase. 

Fluid particles remain on the surface of the bubble, thus yielding the kinematic 
condition 

(7) 
dx 
dt 
-=vq5, X€S, 

i.e. the surface velocity of the bubble is equal to the fluid velocity. The dynamic 
condition on the bubble requires that the pressures be equated, which in the absence 
of surface-tension forces becomes 

where p ,  is the saturated vapour pressure inside the cavitation bubble, p, is the 
undisturbed steady stagnation pressure and IuI is the magnitude of the velocity. The 
sign of the last term depends on the direction of the gravity vector. The remaining 
boundary condition that needs to be specified is the zero-normal-velocity condition 
on the rigid boundary, 

aq5 
ax 
- = 0  o n x = O  (9) 

In  developing the numerical solution of these equations it is convenient to scale 
all terms, thus producing dimensionless equations and, in doing so, yielding the 
dimensionless groups previously defined in (3). Thus all lengths are scaled with 
respect to the maximum bubble radius Rm yielding the following dimensionless 
quantities : 

Quantities involving time either explicitly or implicitly are scaled with respect to 

while the pressure and potentials are scaled as follows, 

where a is clearly a measure of the strength of the axisymmetric stagnation-point 
flow and p, is the pressure at the initial location of the bubble prior to the generation 
of the bubble. 

The dimensionless parameter 6 arises from the dynamic boundary condition on the 
bubble surface which, after rearranging and reverting to lower-case notation, yields 

Physically 6 corresponds to the ratio of the half-life of the bubble to the time it takes 
a bubble of radius R, to rise the order of one radius from rest due to buoyancy forces. 
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3. Numerical analysis 
The boundary-integral method is used to solve the integral-equation formulation 

for the growth and collapse of a buoyant vapour bubble in the presence of an ambient 
axisymmetric stagnation-point flow and in the close proximity of a rigid boundary. 
The appropriate boundary-integral formulation that includes the incident stagnation- 
point flow is 

where 4 is the potential, 
the axisymmetric stagnation-point flow defined in (5) and 

the normal velocity with n the outward normal, q50 

14" ifpEO, 

12x: ifpES, 
c(P) = (14) 

where O is the domain of the fluid and S the bubble surface. In  the case of a rigid 
boundary, the Green function consists of a source and an equal source at the image 
point, thus automatically satisfying the boundary condition specified in (9). As the 
problem is axisymmetric the Green functions may be integrated in the azimuthal 
direction leading to expressions involving complete elliptic integrals. 

A Lagrangian description of the bubble surface S is employed. Thus the surface 
of the bubble ( r , z )  and the potential are specified at N+1 points requiring a 
representation for r ,  z, 4 and a$/& on N segments. This is achieved by the following 
isoparametric approximation for both the surface and the functions. Thus on each 
segment 8, (i = 1, . . . , N) we have 

where the parameter E is in the range (0,l) and 

I Hlcn = 1-63 

M2(5) = 5, 
and also $ is defined as a#/&. It is assumed that $I and $, are single-valued at the 
end points of the linear segments that approximate the surface. 

Collocation points are chosen to be the end points of the N segments, yielding N +  1 
equations in N +  1 unknowns of the form 

N N 

5-1 ,-1 
2 7 4  + (a,*, 4, + a2t, 4,+A = (bit, $, + b2,  $,+A (16) 

where & corresponds to the difference between the potential 4 and the axisymmetric 
stagnation point potential #o. The coefficients in (16) are obtained as follows; : 

(17) 
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where sj is the length of the segment and cj(r,O) is the image point of q ( r , e )  in the 
plane x = 0. 

The integrals are performed analytically through the azimuthal angle (0,2n) to 
yield complete elliptic integrals and then numerically by using appropriate quadrature 
rules. Gauss-Legendre quadrature is adequate unless the collocation point p ,  is 
within the segment sj or is one of the end points, in which case the integrand is 
singular and must be treated specially. The singular integrals are performed by 
separating the integrals into the logarithmically singular term and the non-singular 
term. The singular term is integrated using a quadrature scheme incorporating the 
logarithm to complete the integration (Stroud & Secrest 1962) while the non-singular 
term uses normal Gauss-Legendre quadrature. The matrix equation (16) is solved 
using standard elimination packages to yield the normal velocity at the end of each 
segment. 

The initial shape of the bubble will be taken to be a sphere of small radius R, 
(usually R, x O.lR,) located a distance h above the rigid boundary. We suppose the 
initial potential on the surface of the bubble due to its outward spherical motion is 
that associated with the equivalent Rayleigh bubble of the same radius. Account 
may be taken of the rigid boundary in the initial condition but it does not appear 
to be of great importance. With this initial information we may now solve (16) to 
yield the normal velocity a#/& on the bubble surface. With our prior knowledge of 
4 we may also calculate the tangential velocity on the bubble surface which, together 
with +/an, completely specifies t’he velocity (u = V#) of a ‘fluid particle’ on the 
surface of the bubble. This now enables us t o  ‘update’ the shape of the bubble and 
the potential on its surface at each of these points by using a simple Euler scheme 
as follows: 

r , ( t+A)  = rj ( t )+v,At+O(At)2,  

The a$/at  in (19) may be replaced by using the Bernoulli pressure condition (8) on 
the bubble surface, thus allowing us to ‘update’ the potential on the bubble surface 
without requiring a finite-difference expression for a$/at. The time step At is carefully 
chosen so as to restrict the change in 4. The above procedure is repeated throughout 
the growth and collapse of the bubble, yielding the time history of the bubble shape 
and the trajectories of all the particles. In addition, the pressure and velocity field 
may be calculated anywhere in the fluid during the lifetime of the bubble. More 
extensive details on the boundary-integral method used here may be obtained from 
Taib et al. (1984) and Taib (1985). 

In the calculations, the results of which are described in the next section, N is equal 
to either 16 or 32. Accuracy tests were conducted on the spherically symmetric 
Rayleigh bubble problem on which an exact solution is available for comparison. 
Errors in the normal velocity ranged from 0.76 yo for the 16-point linear isoparametric 
representation through to 0.003 ”/b for the 16-point quadratic representation (Taib 
1985). Computations were performed on the UNIVAC 1100/60 computer at the 
University of Wollongong Computer Centre. 
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FIQURE 2. (a) Bubble shapes for y = 1.5 during collapse phaee at dimensionless times (i) 1.034, (ii) 
1.725, (iii) 1.880, (iv) 2.015, (v) 2.039, (vi) 2.058, (vii) 2.077, (viii) 2.097. (a) Bubble shapes for 
y = 1.0 during collapse phase at dimensionless times (i) 1.047, (ii) 1.856, (iii) 2.027, (iv) 2.053, (v) 
2.102, (vi) 2.126, (vii) 2..49, (viii) 2.164. 
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FIGURE 3. The particle pathlines during growth and collapse for the cases (a) y = 1.5 and ( b )  
y = 1.0. 
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FIQIJRE 4. Equally spaced pressure contours for (a) y = 1.5 at dimensionless time 2.097 and ( b )  
y = 1.0 at dimensionless time 2.164. Maximum pressure at (*) of 29.54 and 8.21 respectively. 

4. Computational results 
In  this section we illustrate the bubble shape, particle paths and pressure contours 

that are predicted for the growth and collapse of a cavitation bubble near a rigid 
boundary. In  the following discussion we will consider several separate examples that 
will assist us in gaining a firmer understanding of the growth and collapse of a 
cavitation bubble near a rigid boundary. 
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4.1. Rigid boundary 
In  figures 2, 3 and 4 examples of bubble shape, particle paths and final pressure 
contours are illustrated for y = 1.5 and 1.0. In  these examples gravity and an 
ambient incident flow are not included, leaving only the rigid boundary to break the 
spherical symmetry of the Rayleigh bubble. In figures 2 (a, b) the bubble shape for 
the collapse phase is shown ; in both cases yielding a high-speed jet directed towards 
the boundary. The closer the bubble is to the boundary, the more asymmetric is the 
collapse, the greater the volume of vapour left in the bubble as it becomes multiply 
connected and the greater the lifetime of the bubble. In addition if we compare our 
results with those of Plesset & Chapman (1971) and Prosperetti (1982), who only 
considered the collapse phase from a sphere, we find that our bubbles are significantly 
closer to the rigid boundary, indicating the importance of the growth phase in 
ultimately determining the collapse characteristics of the bubble. 

Figure 3 illustrates the particle pathlines through both growth and collapse. 
During the growth phase, particle pathlines are almost radial, looping around near 
‘half-life’ to be drawn down into the almost parallel motion found in the high-speed 
liquid jet. 

Figure 4 shows the pressure contours at the last time step before the jet touches 
the free surface on the other side of the bubble. From the Rayleigh-bubble example 
we might anticipate a maximum pressure occurring close to the bubble surface and, 
because of the loss of spherical symmetry in the rigid boundary, we might expect 
either some axially symmetric surface, a ring or a point on the axis to be the ‘region’ 
of maximum pressure. In the case of a rigid boundary alone i t  proves to be a point 
on the axis above the bubble. A physical explanation is as follows: at the start of 
the collapse the maximum pressure occurs at infinity causing the fluid to accelerate 
towards the bubble, fluid preferentially being drawn from near the vertical axis 
because of the focusing effect of the rigid boundary. However as the collapse 
continues, mass conservation demands that the bulk of the fluid some distance from 
the boundary must decelerate, creating a point of maximum pressure (i.e. aaVp = 0) 
close to the collapsing bubble surface. Conversely, the small volume of fluid between 
the point of maximum pressure and the bubble is being continually accelerated, 
creating the very high-speed liquid jet so clearly evident in figure 2. 

It is of interest to calculate the maximum jet speed Urn which occurs at the end 
of the collapse phase. For y = 1.0 the maximum speed of the jet is Urn = 8.6(Ap/p)!, 
while Urn = ll.O(Ap/p)i for y = 1.5, and at  y = 2.0 a value of Urn = 16.l(Ap/p)t is 
obtained. The higher jet speeds occur because the bubble has the opportunity to 
collapse to a smaller size, and hence higher velocities and pressures (see figure 4), for 
larger values of y.  Gibson (1968) calculated from his experiments an average value 
of Urn = 7.6(Ap/p): for values of y around 1.0, thus confirming the general accuracy 
of our calculations. 

4.2. Rigid boundary, buoyant bubble 
While buoyancy is normally insignificant in transient cavitation bubbles, it  may be 
important in experimental apparatus to study cavitation while operating under 
reduced pressure or in underwater explosions. However our main interest is due to 
the facility of gravity introducing a pressure gradient in the fluid but with the added 
advantage of the absence of fluid motion. It allows us a ‘free parameter’ in which 
we may vary the pressure gradient around the bubble to gain a better physical 
understanding of cavitation phenomena near a boundary. 
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FIQURE 5. Bubble shapes for buoyant vapour bubbles near a rigid boundary for indicated 
values of y and 8. 
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In  figure 5 the effects of buoyancy forces on the growth and collapse of a vapour 
bubble near a rigid boundary are illustrated for y-values of 1 and 2 at varying values 
of 6. The positive sign for 6 indicates that buoyancy forces acting on the bubble are 
directed away from the boundary whereas the negative sign indicates the reverse. 
Dimensionless times are indicated underneath the bubble shape. 

The uppermost diagrams, corresponding to 8 = 0, show the various shapes in the 
absence of buoyancy forces (the y = 1 example is identical to figure 2(b)), which are 
the shapes that will form the basis of comparison in the following discussion. For the 
positive 8-values buoyancy forces retard the motion of the bubble towards the 
boundary because they are acting in the opposite direction. In several examples 
y = 2, 6 = 0.224, 0.316) they dominate the motion, forcing the bubbles to migrate 
away from the boundary. 

The y = 1 examples yield a wide range of unusual bubble shapes. For this value 
of y we would expect a strong Bjerknes attraction force towards the boundary, as 
is borne out by 6 = 0 example of figure 2 (b) yielding a high-speed liquid jet in the 
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latter stages of collapse. The 6 = 0.224 example shows a much weaker jet structure 
than the 6 = 0 case because of the opposing buoyancy forces. The next two examples 
corresponding to 6 = 0.316 and 0.447 yield most unusual bubble shapes in the latter 
stages of collapse. The 6 = 0.316 calculations indicate a ‘columnar’-shaped bubble 
that finally collapses towards the rigid boundary. In the 6 = 0.447 case buoyancy 
forces marginally dominate boundary attraction forces producing a ‘light-bulb’ 
shaped bubble, which is not uncommon in chemical bubble reactors (Pinczewski 
1981). In  the bottom two examples (6= -0.316, -0.447) buoyancy forces act 
towards the boundary in the same direction as the Bjerknes force. Two features are 
apparent in these examples. First, the bubbles are more oblate with a broader jet 
than the zero-buoyancy examples. Secondly, the lifetime of the bubble is less because 
the stronger buoyancy force pushes the jet through earlier, bearing out the intuitive 
ideas of Benjamin & Ellis (1966) who wrote that ‘ . . . too large a normal motion may 
precipitate jet formation too early in the collapse for it to be most effective . . . ’. 

In the y = 2 example the Bjerknea force is much weaker and, as a consequence, 
produces much smaller, almost spherical bubbles yet with a small fast jet at  the 
completion of the collapse phase (provided, of course, that the buoyancy forces are 
not too dominant, as occurs in the b = 0.447 example). The lifetime of the bubble 
appears to be relatively insensitive to either the magnitude or the sign of the 
buoyancy parameter. An interesting feature is the change in direction of migration 
of the bubble, and hence the direction of the liquid jet, in going from 6 = 0.158 to 
0.224. In the next section we provide a physical explanation of this phenomenon by 
introducing the concept of the Kelvin impulse. A significant-sized jet is produced 
towards the rigid boundary for the a =  -0.316 nd -0.447 examples when the 
buoyancy forces acting towards the boundary dominate the motion of the bubble. 

4.3. Rigid boundary, buoyant bubble, stagnation-point flow 

In figure 6 the additional influence of axisymmetric stagnation-point flow is included. 
The stagnation-point flow contributes to the deformation of the bubble via the two 
separate mechanisms, fist through the velocity field and secondly through the 
pressure gradient, which decelerates the incident flow to yield a maximum pressure 
at the stagnation-point. 

In  the upper set of diagrams in figure 6 examples are shown of the calculated 
bubble shapes of a buoyant vapour bubble in relatively weak stagnation-point flow. 
For the y = 2 examples, both forward (a > 0) and rearward (a < 0) stagnation-point 
flows with buoyancy forces acting away (6 > 0 )  and towards (6 < 0 )  the rigid 
boundary are exhibited. In  the a = 0.15 examples neither attraction or repulsion 
mechanisms dominate but instead the bubble collapses from the side pinching-off the 
bubble into two parts. This type of phenomenon has been previously reported in 
experimental studies by Gibson & Blake (1982) near flexible boundaries, and by 
Chahine (1983) when a cavitation bubble is located equally distant from two parallel 
plane boundaries. Several of these calculations are reminiscent of the bubble shape 
observations made by Ellis (1956) and reported later by Lauterborn & Hentschel 
(1985). It is postulated that the final collapsed state of the bubble may be two 
toroidal bubbles/ring vortices with opposite circulation. 

The a = -0.15 examples produce entirely different bubble shapes from the 
a = 0.15 examples even though the dynamics in each case are identical (i.e. both the 
ambient buoyant and stagnation-point pressure fields). However, the kinematics of 
the bubble motion are different. In the a > 0 examples the bubble is being 
decelerated in the direction of the rigid boundary whereas for a < 0 the bubble is 
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FIGURE 6. Bubble shapes for buoyant vapour bubbles in axisymmetric stagnation-point flow 
near a rigid boundary for indicated values of a, y and 8. 

- a n  
0.967 1.057 1.144 

being accelerated away from the boundary. Thus we can observe, for the larger 
bubbles in the S = k 0.224 examples, that the liquid jets are formed in the direction 
that the buoyancy forces are acting: away from the boundary in the S = 0.224 
example, toward the boundary in the 6 = 0.224 case. In the latter stages of collapse 
the instability due to the acceleration of the interface leads to a liquid jet appearing 
at  the rear of the bubble. Thus, in the 6 = -0.224 example, this instability acts in the 
same direction as the buoyancy-driven jet while in the 6 = -0.224 case an opposing 
jet is produced yielding the unusual phenomenon of jets at both ends of the bubble. 
Superimposed on all of these features is the weak Bjerknes attraction force which 
can be seen in the 6 = 0 case in the top-right-hand diagram. 

In the lower diagram bubble shapes are shown for the case of stronger stagnation- 
point flow, with the bubble located at a much greater distance from the boundary. 
Because the bubbles are in a stronger flow field they flatten out forming an oblate 
shape as predicted by Miksis, Vanden-Broeck & Keller (1982) and Ryskin & Leal 
(1984) for rising bubbles. The weak yet broad, jet is directed away from the rigid 
boundary as the pressure gradient is acting in this direction. 
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5. Kelvin impulse 
The Kelvin impulse is a particularly valuable dynamical quantity in unsteady fluid 

mechanics, being first used in the context of cavitation-bubble dynamics by 
Benjamin & Ellis (1966). It corresponds to  the local momentum of the cavitation 
bubble and can therefore be used to  determine aspects of the gross bubble motion. 
It is a function of time and may change sign giving the appearance of less restrictive 
properties than linear momentum of, say, a projectile. Other terminology has been 
used in other areas. For example McIntyre (1981) uses the term pseudo-momentum 
in his study of wave mechanics (see also Benjamin 1984 for further discussion). 

The Kelvin impulse arises naturally from the study of the conservation of linear 
momentum. When considered in a half-space, the following relation for the Kelvin 
impulse I of a buoyant bubble is obtained: 

with 

I = pJsg5nds = F(t)ds, 
0 

where I‘ is the volume of the bubble, S the bubble surface, Z,, the surface of the rigid 
boundary and ex the unit vector in the x-direction. Thus the Kelvin impulse of the 
bubble depends on the buoyancy force and a ‘force’ exerted on the fluid by the rigid 
boundary. 

If the bubble is taken a sufficient distance away from the boundary it may be 
represented approximately by a time-varying point source, especially as far as the 
integral in (21) is concerned. Thus, for source strength m(t) ,  we obtain (Blake & 
Cerone 1982) for the x-component of the ‘force’ F 

FJt)  = pgv-- Pm2 
16xh2‘ 

The surprising feature of this calculation is that  the second term is independent of 
the sign of m(t), i.e. the impulse is the same whether i t  is a source or sink. In  addition 
we may exploit the Rayleigh bubble solution for m(t) ,  which for dimensionless 
quantities yields 

m(t)  = f47cR2 - ---I 
K 3  >1”. 

the sign depending on whether it is the growth or collapse phase of the bubble. 
We may now evaluate I J T J ,  the final value of the 2-component of the Kelvin 

impulse, where T, is the total lifetime of a Rayleigh bubble (T, = 1.83 . . . ). This may 
be interpreted as the final bubble momentum and hence yields the direction of 
migration of the bubble. It may be shown that 

where B(z, w) are beta functions (see Abramowitz & Stegun 1965). The zero-impulse 
curve may be obtained from equating Ix(T,) to zero, yielding 
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FIGURE 7. Graphical tabulation of numerical calculations conducted at different parameter values 
of y and 8. The arrows indicate direction of jet and bubble migration. The null Kelvin-impulse line 
of y8 = 0.442 is included on the diagram. 

Thus, if the parameters of the bubble are such that y8 > 0.442, the bubble will 
migrate away from the boundary as Iz(Tc) > 0, while if it is less than 0.442, the 
bubble will migrate towards the boundary. In  our numerical experiments of the 
previous section, the results of which are summarized in figure 7, it would appear that 
(25) is an accurate estimate of the ‘changeover condition’ even when this 
approximation is not strictly valid close to the boundary (see e.g. figure 3). 

In  the absence of buoyancy forces or an ambient flow, a pulsating cavitation 
bubble is attracted towards a rigid boundary because of the Bjerknes effect. This is 
borne out by the Kelvin impulse which is directed towards the boundary during both 
growth and collapse of the bubble (am2 in (22)). In physical terms we may think in 
terms of the Kelvin impulse for the growth and collapse of a cavitation bubble as 
follows: during the growth phase the side of the bubble nearest the boundary will 
move into a region of higher relative impedance (i.e. larger added-mass) than the 
other side even though the velocities are similar. Thus the Kelvin impulse will be 
directed towards the boundary. Collapse occurs from the low-impedance side yielding 
the instability cum liquid jet on the far side of the bubble. A buoyancy force, 
proportional to bubble volume, when directed away from the boundary will slow the 
migration of the bubble and may even cause the bubble to migrate away from 
the boundary if sufficiently large. In  this case the jet is often directed away from the 
boundary, as occurs in several of our examples. 

6. Conclusion 
In  this paper we have considered the growth and collapse of a cavitation bubble 

near a rigid boundary in the presence of buoyancy forces and an incident stagnation- 
point flow. While a rigid boundary always attracts a pulsating cavitation bubble 
through the Bjerknes effect, buoyancy forces and stagnation-point flow may either 
attract or repel a bubble depending on their orientation and strength. 
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The sign and magnitude of Kelvin impulse appears to be a particularly valuable 
quantity in that it determines the direction of migration of the cavitation bubble and 
the violence with which it will collapse. It would appear that the Kelvin impulse of 
the collapsing cavitation bubble just prior to becoming multiply connected would 
need to be contained in the ring vortex system that is formed. 

A pressure gradient directed away from the boundary slows the migration of the 
bubble towards the boundary and weakens the strength of the jet. Conversely, if the 
pressure gradient is directed towards the boundary, the collapsing bubble is more 
oblate and the jet slower and broader. The jet also forms earlier, shortening the 
lifetime of the bubble, and therefore may not be so damaging. It is clear that a set 
of optimal conditions exist for cavitation collapse to be most damaging and these 
remain to be determined. 

Other features to come out of this study are (i) the importance of the growth phase 
in determining collapse characteristics; (ii) the initial location of the bubble; (iii) the 
relative strength of the buoyancy force and stagnation-point flow in determining 
collapse characteristics; (iv) the location of the regions of maximum pressure ; and 
(v) the existence of a ‘bubble-splitting’ phenomena under certain conditions. It is 
clear that while a number of important features have been identified in this study, 
many more need to be studied to a greater depth especially with regard to fully 
three-dimensional flow. 
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